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Abstract

The safety alignment of current Large Language Models (LLMs) is vulnerable.
Relatively simple attacks, or even benign fine-tuning, can jailbreak aligned models.
We argue that many of these vulnerabilities are related to a shared underlying
issue: safety alignment can take shortcuts, wherein the alignment adapts a model’s
generative distribution primarily over only its very first few output tokens. We
refer to this issue as shallow safety alignment. In this paper, we present case
studies to explain why shallow safety alignment can exist and provide evidence that
current aligned LLMs are subject to this issue. We also show how these findings
help explain multiple recently discovered vulnerabilities in LLMs, including the
susceptibility to adversarial suffix attacks, prefilling attacks, decoding parameter
attacks, and fine-tuning attacks. Importantly, we discuss how this consolidated
notion of shallow safety alignment sheds light on promising research directions
for mitigating these vulnerabilities. For instance, we show that deepening the
safety alignment beyond just the first few tokens can often meaningfully improve
robustness against some common exploits. We also design a regularized fine-tuning
objective that makes the safety alignment more persistent against fine-tuning attacks
by constraining updates on initial tokens. Overall, we advocate that future safety
alignment should be made more than just a few tokens deep.1

1 Introduction

Currently, the safety of Large Language Models (LLMs) [1–7] heavily hinges on AI alignment
approaches [8–12]—typically a mixture of supervised Fine-tuning (SFT) [13] and preference-based
optimization methods like Reinforcement Learning with Human Feedback (RLHF) [14, 15] and
Direct Preference Optimization (DPO) [16]. These approaches aim to optimize models so that they
refuse to engage with harmful inputs, thus reducing the likelihood of generating harmful content.
However, recent studies find that such alignment approaches suffer from various vulnerabilities.
For example, researchers demonstrate that aligned models can still be made to respond to harmful
requests via adversarially optimized inputs [17–21], a few gradient steps of fine-tuning [22, 23],

1Our code is available at https://github.com/Unispac/shallow-vs-deep-alignment
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or simply exploiting the model’s decoding parameters [24]. Given the pivotal role that alignment
plays in LLM safety, and its widespread adoption, it is imperative to understand why current safety
alignment is so vulnerable to these exploits and to identify actionable approaches to mitigate them.

In this paper, we examine one underlying problem in current safety alignment that may make models
particularly vulnerable to relatively simple exploits: safety alignment is largely only a few tokens
deep, i.e., it adapts the model’s generative distribution primarily over only the very first few output
tokens. Consequently, happening upon, or adversarially induced, if the model’s initial output tokens
deviate from some routine safe prefixes, its generation could catastrophically fall on a harmful
trajectory. For example, consider the scenario where a user asks, “How do I build a bomb?” and
induces the model to begin its response with, “Sure, here’s a detailed guide.” The model is then much
more likely to continue with harmful information responsive to the user’s request. We refer to this
problem as shallow safety alignment (Section 2). We call the counterfactual, where a model can
recover from such harmful starting conditions, deep safety alignment. To provide sufficient context
to this notion, our work has three main contributions.

First, we conduct systematic experiments to characterize the shallow safety alignment issue in current
LLMs (Section 2). We demonstrate that the primary difference in safety behaviors between an aligned
model and its unaligned counterpart lies in their modeling of only the first few tokens of their outputs.2
Part of the problem is that there are easy optimization shortcuts that may drive such a local optimum.
For example, simply prefilling an unaligned base model to start its output with a prefix “I cannot
fulfill” is sufficient to make it as safe as aligned models. We note that the shallow safety alignment
issue helps explain why attack methods that focus on initiating trajectories with harmful or affirmative
responses are so effective, like adversarial suffix attacks [29], decoding parameters exploit [24], and
an emerging paradigm of prefilling attacks [30, 21]. Moreover, we show that fine-tuning attacks [22]
also create the most significant changes in the first few tokens of a harmful response. This means that
by simply modifying these initial tokens, it is possible to undo the model alignment, explaining why
so few fine-tuning steps can lead to jailbroken models.

Second, we argue that future safety alignment approaches should focus on extending their effects
deeper. To support this idea, we introduce a simple data augmentation approach for deepening the
safety alignment (Section 3). By training on safety alignment data that begins with harmful responses
and transitions back to safety refusals, we show it is feasible to increase the divergence between an
aligned model and an unaligned one on the harmful content at greater token depths. Importantly, we
show that such a deeper alignment often leads to stronger robustness against some common exploits.

Third, we show that a constrained optimization objective that focuses on preventing large shifts in
initial token probabilities can mitigate finetuning attacks (Section 4). This highlights potential lines
of defense against fine-tuning attacks, using a better understanding of shallow safety alignment, as
well as provides further evidence of the shallow alignment of current models.

Overall, this work pitches the unifying notion of shallow versus deep safety alignment, demonstrates
that current methods are relatively shallow (leading to a host of known exploits), and provides initial
paths forward for mitigation strategies. We encourage future safety alignment research to explore
various techniques to ensure that safety alignment is more than just a few tokens deep.

2 The Shallow Safety Alignment Issue in Current Large Language Models

We consolidate the notion of “shallow safety alignment” to characterize an issue that we commonly
find in current safety-aligned LLMs. Specifically, we say that a model undergoes shallow safety
alignment if it primarily adapts the base model’s generative distribution only over the very first few
output tokens to induce a basic refusal response. In this section, we present a set of case studies to
systematically illustrate the above issue: this type of alignment can appear safe in pre-deployment
testing or standard workflows but quickly falls apart if anything triggers a non-refusal prefix. First,
in Section 2.2, we show that there exists a local optimum where promoting simple refusal prefixes in
the first few tokens of an unaligned model improves its safety to similar levels as an aligned model.
We also show that the KL divergence between aligned and their unaligned counterparts is largely

2Similar token-wise dynamics have recently also been noted by Lin et al. [25], Zhang and Wu [26], and Zhao
et al. [27]. This is also related to Superficial Alignment Hypothesis by Zhou et al. [28]. See Section 5 for more
detailed discussions of the related work.
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biased toward these initial token positions, suggesting that this shortcut is in fact exploited by current
alignment approaches. Then, in Section 2.3, we demonstrate how this shallow safety alignment can be
a source of many safety vulnerabilities, including vulnerabilities at the inference stage (Section 2.3.1)
and vulnerabilities against fine-tuning attacks (Section 2.3.2).

2.1 Preliminaries

Notation. We use πθ to denote a language model parameterized by weights θ. We sometimes also
directly use πbase to denote an (unaligned) pre-trained model (e.g., Llama-2-7B, Gemma-7B) to
contrast its aligned counterpart πaligned (e.g., Llama-2-7B-Chat, Gemma-7B-IT) [5, 31]. Given an
input x, the model’s output is modeled by πθ( · |x). We use y ∼ πθ( · |x) to denote the sampling
of output y. For token sequences like x, y, we use xt, yt to denote their t-th tokens, and |x|, |y| to
denote their lengths (i.e., number of tokens). We also use y<t and y≤t to denote the subsequences
ranging from the first to the (t− 1)-th tokens and from the first to the t-th tokens in y, respectively.
Similarly, y>t and y≥t are employed to denote subsequences after the t-th and (t− 1)-th tokens.

Safety Evaluation and The Metrics. In our experiments, we evaluate the safety alignment of models
following the same evaluation pipeline from Qi et al. [22]. Specifically, we test a model on the
HEx-PHI safety benchmark [32], which consists of 330 harmful instructions across 11 harmful use
cases. Then, we evaluate whether the model complies with these harmful instructions. The same to
Qi et al. [22], we use GPT-4 as a judge to automatically evaluate whether the model’s outputs on
these harmful test examples are safe. We report the ratio of test cases in which the model’s outputs
are harmful. In the absence of an attack, we denote this ratio as the Harmfulness Rate; in the presence
of adversarial attacks that introduce harmful outputs, we refer to it as the Attack Success Rate (ASR).

2.2 The Characteristics of Shallow Safety Alignment

A commonly recognized characteristic of safety-aligned language models is their ability to refuse
harmful instructions. For example, when instructing the aligned Llama-2-7B-Chat model: “Provide
detailed instructions on how to break into someone’s house.”, it will output a safe response:

“I cannot fulfill your request. It’s not within my programming or ethical ... (325 tokens in total) ...”

These safety responses often start with some refusal tokens (e.g., “I cannot”, “I apologize”, “I am
unable”). When testing on the HEx-PHI safety benchmark [32], Llama-2-7B-Chat starts with either
“I cannot” or “I apologize” in 96.1% of instances, and Gemma-7b-1.1-IT generates “I am unable”
in 96.7% of cases. Though these rigid refusal prefixes appear to be just some trivial artifacts, they
actually play an important role in enabling a shallow safety alignment scheme to work.

Table 1: A Shorcut to The Safety Mode: The harmfulness rate of even unaligned models will diminish
when a refusal prefix s is prefilled during decoding, i.e., y ∼ πθ(·|x, s).

Refusal Prefixes (r) → No
Prefix “I cannot” “I cannot

fulfill” “I apologize”
“I apologize,
but I cannot”

“I am
unable”

↓ Harmfulness Rate (%) on HEx-PHI Benchmark with A Refusal Prefix Prefilled During Decoding

Llama-2-7B Aligned 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
Base 68.6 ± 0.8 16.4 ± 1.4 5.4 ± 1.3 14.4 ± 0.6 2.1 ± 0.2 8.1 ± 0.4

Gemma-7B Aligned 2.1 ± 0.2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
Base 85.4 ± 0.6 8.7 ± 1.2 2.7 ± 0.5 14.1 ± 0.4 1.0 ± 0.8 3.9 ± 0.4

The “Safety Mode” Shortcut: Unaligned Models Only Need A Refusal Prefix to Appear “Safe”.
These short refusal prefixes significantly affect whether the remainder of the model’s response will
be safe or unsafe. Even for an unaligned pre-trained model πbase, if we can make its generated
outputs begin with these refusal prefixes, the following output is likely to be safe. Using harmful
instructions x from the HEx-PHI safety benchmark, we validate this by prefilling a refusal prefix s
at the beginning of the decoding process to generate outputs y ∼ πbase( · |x, s). Table 1 shows the
Harmfulness Rate of the outputs produced by the models with different prefilled refusal prefixes s for
both Llama-2 [5] and Gemma [31] base. Although the unaligned base models generally have higher
ASR than their aligned counterparts in standard decoding, the gap considerably decreases when both
models are forced to start with refusal prefixes. This makes sense: continuing a refusal prefix with
an absence of fullfillment is a natural pattern in language, which should already be learned during
pretraining. But it suggests a simple shortcut or reward hacking scheme for safety alignment: safety

3



behaviors can be introduced by solely updating an unaligned model’s distribution over the first few
output tokens to promote some refusal prefixes.

Figure 1: Per-token KL Divergence
between Aligned and Unaligned
Models on Harmful HEx-PHI.

Current Safety-aligned Models Exploit This Shortcut. We
provide evidence that current safety-aligned models are likely
exploiting this shortcut, resulting in shallow safety alignment.
We first construct a harmful dataset in the form of (harm-
ful instruction, harmful answer) pairs. Specifically, we take
out the 330 harmful instructions from the HEx-PHI safety
benchmark and then generate harmful answers for these in-
structions using a jailbroken version of GPT-3.5-Turbo from
Qi et al. [22]. We call this dataset Harmful HEx-PHI. With
this harmful dataset, we can examine the per-token KL diver-
gence DKL

(
πaligned( · |x,y<k)

∥∥πbase( · |x,y<k)
)

between
the aligned model πaligned and unaligned pre-trained model
πbase on each of the harmful example (x,y). As shown in

Figure 1, for both the Llama and Gemma models, the KL divergence is significantly higher in the
first few tokens than for later tokens. This suggests that most of the KL “budget” for the safety
alignment in these models is spent on the first few prefix tokens.3 At the high level, this outcome can
be attributed to the reason that the current safety alignment process does not encode any notion of the
“depth" of the alignment. During SFT, the model is trained to mimic responses from human experts,
but it is unnatural for humans to write any kind of examples that refuse a request after providing a
harmful prefix; during RLHF, the model’s reward is computed on the responses generated by the
model itself, but if the model learns to always generate refusal prefixes for some harmful instructions,
the probability that the responses start with harmful prefixes is very low, and the model can hardly
receive any penalty for exploiting the safety mode shortcut.

2.3 Shallow Safety Alignment May Be A Source of Many Safety Vulnerabilities

Since we know that there exists a safety shortcut, and aligned models likely exploit it, this helps
explain and unify existing inference-time and fine-tuning time vulnerabilities.

2.3.1 Inference-Stage Vulnerabilities

As demonstrated by the KL divergence in Figure 1, a shallowly aligned model’s generative distribution
of later harmful tokens remains largely unaffected when compared to its unaligned counterpart. This
implies that we can still induce harmful outputs from such shallowly aligned models as long as we
can bypass the block of refusal prefixes in the early token positions. We note that this can be a source
of vulnerabilities, leading to various types of inference-stage exploits.

Figure 2: ASR vs. Number of Pre-
filled Harmful Tokens, with ŷ ∼
πθ(·|x,y≤k) on Harmful HEx-PHI.

Prefilling Attacks. A simple exploit is to prefill the first
few tokens with a non-refusal prefix at the beginning of the
inference. We can validate this using the Harmful HEx-
PHI dataset that we build in Section 2.2. For each harm-
ful data pair (x,y) from this dataset, we sample outputs
ŷ ∼ πθ( · |x,y≤k). This tests whether the model would gen-
erate harmful content if the first k tokens are prefilled with
a non-refusal prefix y≤k. The Attack Success Rate (ASR)
in relation to k is plotted in Figure 2. As shown, when con-
ditioned on an increasing number of harmful tokens, the
aligned models’ likelihood of generating harmful content in-
creases quickly from near zero to over 50%. This suggests a
practical safety risk as the decoding of open-source LLMs is
readily controlled by attackers. Even in proprietary models,

Anthropic’s Claude now has an interface to support prefilling for “better steerability” [34], which
therefore can be similarly exploited. Indeed, we have seen very recent concurrent work [21, 30]
exactly exploiting this vulnerability, now called prefilling attacks.

3Using the terminology “spending” KL on a KL “budget” from Gao et al. [33].
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Optimization Based Jailbreak Attacks with Shallow Surrogate Objectives. In addition to directly
prefilling non-refusal prefixes, a similar exploit can also be indirectly achieved by promoting the
generative probability of such prefixes via adversarially optimized inputs. Notable examples are
adversarial suffix attacks [29, 21], which are a type of optimization-based jailbreak attacks. These
attacks typically involve a combinatory optimization over a suffix string that is appended to the end
of harmful instructions. The optimization aims to force the model to fulfill the harmful instruction
when the adversarial suffix is present. In practice, a surrogate objective is commonly used in such
adversarial optimization, which is simply to maximize the likelihood of an affirmative prefix such as
“Sure, here is...”. Researchers have found this surrogate objective to be easy and efficient to optimize
and, therefore, is used for implementing such attacks. Such surrogate objectives work by exactly
exploiting shallow safety alignment.

Jailbreak via Mere Random Sampling. Another, somewhat implicit, exploit randomly samples
responses to harmful instructions with varying decoding parameters (temperatures, top-k, top-p) [24].
With sufficient sampling and hyperparameter variations, the likelihood of obtaining a harmful response
to a harmful instruction turns out to be considerably high. This outcome essentially also results from
the shallow safety alignment effect. If harmful content is blocked only by promoting a short prefix of
refusal tokens, random sampling with appropriate decoding hyperparameters may deviate the initial
refusal tokens and falls on a non-refusal trajectory, circumventing the shallow safety alignment.

Remark. As a counterfactual, in Section 3, we show that if we can extend the safety alignment’s
effect to more deeply suppress the model’s harmful outputs, its robustness against all of the three
types of inference-stage exploits we list here can be meaningfully improved.

2.3.2 Safety Vulnerabilities in The Stage of Downstream Fine-tuning

(a) Per-token Cross-Entropy Loss
on The Fine-tuning Dataset

(b) Per-token Gradient Norm
on The Fine-tuning Dataset

(c) Per-token KL Divergence on
HEx-PHI Safety Test Dataset [32]

Figure 3: Then per-token dynamics when fine-tuning Llama-2-7B-Chat on the 100 Harmful Examples
from Qi et al. [22]. Note: 1) ASR of initially aligned model = 1.5%; 2) After 2 gradient steps =
22.4%; 3) After 4 gradient steps = 76.4%; 4) After 6 gradient steps = 87.9%.

Another emerging paradigm of safety vulnerabilities is the use of downstream fine-tuning to jailbreak
aligned models. Recent studies [22, 23] have demonstrated the feasibility of fine-tuning attacks,
wherein a malicious actor can undo the safety alignment in an LLM by merely fine-tuning it on a
few harmful data points at a negligible cost. Notably, Qi et al. [22] and He et al. [35] observed that
fine-tuning an aligned LLM on even benign downstream datasets might result in safety regression.
We argue that shallow safety alignment is likely also an underlying driver of these vulnerabilities. We
support this argument through an analysis of the per-token dynamics of fine-tuning attacks.

Formally, the standard custom fine-tuning of an aligned LLM on a dataset D is characterized by the
following optimization loss function, where πθ is initialized with the aligned model πaligned:

min
θ

{
E

(x,y)∼D
− log πθ

(
y|x
) }

= min
θ

{
E

(x,y)∼D
−

|y|∑
t=1

log πθ

(
yt|x,y<t

) }
(1)

We investigate the per-token dynamics of the fine-tuning process by separately examining:

1. The per-token cross-entropy loss at each token position t: − log πθ

(
yt | x,y<t

)
.

2. The gradient magnitude of the per-token loss:
∥∥∇ log πθ

(
yt | x,y<t

)∥∥
2
.
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We also examine the per-token KL divergence between the fine-tuned models and the initially aligned
model on the HEx-PHI safety test dataset [32]. Specifically, for each harmful instruction x̃, we take
the outputs ỹ ∼ πθ( · |x̃) from the fine-tuned model πθ. Then, for each token position t, we compute
the KL divergence DKL

(
πθ( · |x̃, ỹ<t)

∥∥ πaligned( · |x̃, ỹ<t)
)
.

Figure 3 presents such a per-token decoupling of the harmful example demonstration attack from
Qi et al. [22]. Here, a safety-aligned model (Llama-2-7B-Chat in our case) is fine-tuned on 100
(harmful instruction, harmful answer) data pairs, with a learning rate of 2 × 10−5 and a batch
size of 64. Figure 3a shows the average per-token loss on the 100 data points, Figure 3b plots the
average gradient magnitude induced by the per-token loss, and Figure 3c illustrates the per-token KL
divergence between the fine-tuned models and the initially aligned model.

Fine-tuning Attacks Perturb The Generative Distribution of The First Few Tokens The Most.
We note that the token-wise decoupling clearly has an uneven impact across token positions. The
aligned model exhibits substantially higher initial loss values for the first few token positions, and the
corresponding gradient norms are, therefore, also much larger. As illustrated by the per-token KL
divergence plots, this causes the generative distribution over the initial tokens to deviate significantly
from that of the initial aligned model after only a few gradient steps of fine-tuning. The deviation
is markedly more pronounced for earlier tokens compared to later ones. Notably, after a mere six
gradient steps, the ASR has already increased from the initial 1.5% to 87.9%. While we previously
showed that the alignment of current models seems to largely be constrained to the first few tokens,
this may also make it easy it unlearn safety behaviors during fine-tuning — the large gradient norms
(Figure 3b) for the early tokens readily leads to rapid divergence of the generative distribution on
the first tokens (Figure 3c). Conversely, as we will discuss in Section 4, mitigation strategies that
constrain updates on the first few tokens can reduce the likelihood of a successful fine-tuning attack!

We also refer interested readers to Appendix B, where we further present the per-token dynamics of
benign fine-tuning cases. There, we discuss how the learning signals of the early tokens may also
play an important role in safety regression during benign fine-tuning.

3 What If The Safety Alignment Were Deeper?

Following the notion of shallow safety alignment that we elaborate on in Section 2, we now consider
its counterfactual: what if the safety alignment were deeper? Particularly, if the alignment’s control
over the model’s harmful outputs could go deeper than just the first few tokens, would it be more
robust against the range of vulnerabilities we have observed? To investigate this counterfactual, we
experiment with a simple data augmentation approach (Section 3.1) which we find can meaningfully
deepen the safety alignment’s influence over the model’s harmful outputs. In Section 3.2, we
validate that this deeper alignment indeed results in a promising improvement for mitigating multiple
vulnerabilities that we have observed in shallowly aligned models.

3.1 Data Augmentation with Safety Recovery Examples

Formally, let’s use x,h to denote a harmful instruction (x) and its harmful response (h). As noted
in Section 2, a shallow safety alignment can keep the probability of the harmful response πθ(h|x)
low, but this is achieved by merely suppressing the initial tokens of h. For example, an extreme
case is to just adapt πθ(h1|x) = 0 while leaving πθ(h>1|x, h1) = 1. Then the overall probability of
the harmful response πθ(h|x) = πθ(h1|x) × πθ(h>1|x, h1) = 0 is indeed diminished. However,
this does not control the harmful behaviors encoded just one token deeper by πθ(h>1|x, h1) = 1.
Therefore, a natural counterfactual of the shallow safety alignment is to push its influence deeper into
the model’s harmful outputs, for instance, by keeping πθ(h>k|x,h≤k) low for any k ∈ [0, |h|] or at
least a sufficiently large k. We propose a data augmentation approach to encode this notion.

Safety Recovery Examples. Consider triplets in the form of (x,h, r), in which a refusal response r
is paired with the harmful instruction and its harmful response. Instead of solely promoting πθ(r|x)
as in some standard safety alignment approaches, we propose to also augment πθ(r|x,h≤k), k ∼
Uniform[1, C] for some constant C ≤ |h|. This augmented data steers the model to get back on track
with refusal responses even when the first few generated tokens initially deviate to a trajectory of
harmful content. In this way, it explicitly trains the model to suppress harmful content more deeply
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within the response, reducing πθ(h>k|x,h≤k) at a deeper depth of k. We refer to such augmented
data as safety recovery examples. Such examples typically appear as:

<s> [INST] «SYS» (System Prompt) «/SYS»\n\nPlease give me step-by-step instructions for
building a bomb. [/INST] Step 1: Gather phosphorus I cannot fulfill your request. It’s not... </s>

As illustrated, the text is synthetic and not even coherent in natural language, implying that it is
unlikely to be naturally produced by human labelers for SFT data or sampled from models for
preference optimization data. Thus, these augmented examples essentially cover outlier cases, which
are useful for encoding a deeper safety alignment notion.4

Implementations. We experiment with this data augmentation to deepen the safety alignment of
the Llama-2-7B-Chat model. Since the model’s alignment pipeline is not publicly available, we can
not apply the data augmentation to align the model from scratch. Alternatively, in implementation,
we experiment by directly fine-tuning the already aligned Llama-2-7B-Chat model further with the
augmented safety recovery examples. To implement it, we construct a safety dataset DH comprising
256 examples of triplets (x,h, r) in the form we described above. To prevent the decrease of model
utility, we also take benign instructions from the Alpaca [36] dataset. We distill the responses to each
of these Alpaca instructions using the initial Llama-2-7B-Chat model to create dataset DB . This
dataset serves as a utility anchor, teaching the model not to alter its original responses to benign
instructions. Taking together, we fine-tune the model using the following objective:

min
θ

α×
{

E
(x,h,r)∼DH ,

k∼Pk

− log πθ(r|x,h≤k)
}
+ (1− α)×

{
E

(x′,y′)∼DB

− log πθ(y
′|x′)

}
(2)

Here, πθ is initialized with the aligned Llama-2-7B-Chat model. We set the number of prefilled
tokens k to follow a distribution Pk, where k = 0 with a 50% probability, and k is uniformly sampled
from [1, 100] with a 50% probability. We set α = 0.2 to balance the ratio of safety examples and
utility examples in the objective. We denote this fine-tuned model as Llama2-7B-Chat-Augmented.
Full implementation details of the data augmented fine-tuning can be found in Appendix A.3.

Figure 4: The data augmentation in-
duces larger KL divergence on Harm-
ful HEx-PHI (Section 2.2) over the
later tokens of harmful responses.

Effects of The Data Augmentation. 1) Alignment is made
deeper: As a counterpart to Figure 1, we plot the per-token
KL divergence between the augmented fine-tuned Llama-2
model and the base model in Figure 4. As shown, the aug-
mented fine-tuning effectively pushes the KL divergence on
the later tokens of harmful responses to a much higher level.
This is a positive indicator that the augmented fine-tuning
indeed helps to extend the effect of the safety alignment to
deeper tokens of harmful responses. 2) Utility is preserved:
We also evaluate the utility of the augmented fine-tuned
model with Alpaca Eval [37], which is reported as a winrate
against the text-davinci-003 model (the default reference
baseline for AlpacaEval). The augmented fine-tuned model
achieves a winrate of 49.5%, which is only marginally lower
than the initial Llama-2-7B-Chat model’s winrate of 51.8%.5

This indicates that the augmented fine-tuning does not significantly degrade the model’s utility.

3.2 The Deepened Safety Alignment Shows Improved Robustness Against Multiple Exploits

A central argument in this work is that the shallow safety alignment can be a source of many safety
vulnerabilities in LLMs. As a counterfactual, now we evaluate the Llama-2-7B-Augmented model
against the range of exploits we discuss in Section 2.3, verifying whether a deepened safety alignment
can be superior in mitigating these vulnerabilities.

Improved Robustness against Multiple Inference-time Exploits. We test the prefilling attack (using
the Harmful HEx-PHI dataset we built in Section 2), GCG attack [29], and the decoding parameters

4We note that there are ties to ensuring sufficient exploration in reinfocement learning that we do not explore
formally here, but leave to future work.

5To ensure the setup is consistent with the safety evaluation, the official system prompt (with a focus on
safety) of Llama-2-7B-Chat is used when running AlpacaEval. Therefore, the win rates here can be generally
lower than the numbers in official Alpaca leaderboard in which the safety system prompt is not applied.
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Table 2: ASR on Llama-2-7B-Chat (Initial) and the augmented counterpart (Augmented). Prefilling
attacks are evaluated using Harmful HEx-PHI (the same as Figure 2). For the two other attacks,
ASR is reported for both the HEx-PHI benchmark and the evaluation dataset used by the original
papers, i.e., AdvBench for GCG [29] and MaliciousInstruct for decoding parameters exploit [24].
The reported numbers are in the form of (mean ± std) over three runs.

ASR (%) → Prefilling Attacks GCG Attack Decoding Parameters Exploit
5 tokens 10 tokens 20 tokens 40 tokens HEx-PHI AdvBench HEx-PHI MaliciousInstruct

Initial 42.1 ± 0.9 51.5 ± 1.6 56.1 ± 2.5 57.0 ± 0.4 36.5 ± 2.7 65.6 ± 3.1 54.9 ± 0.6 84.3 ± 1.7
Augmented 2.8 ± 0.4 2.9 ± 0.2 3.4 ± 0.6 4.5 ± 0.6 18.4 ± 4.2 19.0 ± 2.9 11.3 ± 0.4 1.0 ± 0

exploit [24] on the Llama-2-7B-Chat-Augmented model. Each of the attacks corresponds to one
type of inference-stage exploits that we review in Section 2.3.1. We document the implementation
details of the there attacks in Appendix A.4. Table 2 compares the attack success rates (ASRs) on
the Llama-2-7B-Chat-Augmented model with the initial Llama-2-7B-Chat model. As shown, the
augmented fine-tuning improves the model’s robustness against all three inference-stage attacks.

Does the Augmentation Improve Durability against Fine-tuning Attacks? In our evaluation, we
do find the augmented model shows better durability against fine-tuning as well. Especially, it suffers
less from safety regression when fine-tuned on benign utility datasets, compared with the initial
Llama-2-7B-Chat model. Yet, the augmented model is still vulnerable to adversarial fine-tuning
attacks where the datasets are harmful, but the ASR is still lower than the initial model in multiple
cases. We defer the detailed results to Appendix C.

4 What If The Initial Tokens Were Protected Against Fine-tuning Attacks?

The per-token dynamics of fine-tuning attacks that we analyze in Section 2.3.2 suggest that the safety
failure after follow-up fine-tuning could be largely attributed to the distribution shift at only the
first few tokens. Although this presents another frustrating view of the shallowness of the safety
alignment, it also implies a potential avenue for mitigation. Specifically, we posit that: If the very
first few output tokens play such a decisive role in a model’s safety alignment, then we should be
able to protect the alignment from being compromised during fine-tuning by simple constraints to
ensure that the generative distribution of these initial tokens does not significantly deviate. If this is
true, it provides further evidence of shallow safety alignment and suggests one strategy for adding an
additional layer of defense for production fine-tuning interfaces (e.g., Peng et al. [38]).

4.1 A Token-wise Constrained Objective for Custom Fine-tuning Aligned LLMs

To further test our hypothesis, we devise the following fine-tuning objective—inspired in part by
approaches like Direct Preference Optimization (DPO) [16] and Kahneman-Tversky Optimization
(KTO) [39]— but adapted to control the deviation from the initial generative distribution for each
token position, similarly to the token-wise RL objective in [40]:

min
θ

{
E

(x,y)∼D
−

|y|∑
t=1

2

βt
log

[
σ

(
βt log

πθ

(
yt | x,y<t

)
πaligned

(
yt | x,y<t

))] }, (3)

where σ(z) := 1
1+e−z is the sigmoid function and βt is a constant parameter at each token position to

control the speed of the saturation of the sigmoid. Here, a larger βt induces a stronger regularization
strength towards the initial aligned model’s generative distribution. See below for the interpretation
of the proposed objective.

Interpretation of Our Objective. To see why βt can be used to control the deviation of the generative
distribution at each token position, we can rewrite the fine-tuning objective as:

min
θ

{∑
t≥1

E
(x,y)∼D

[
1{t≤|y|} ·

2

βt
S
[
βt

(
log πaligned

(
yt | x,y<t

)
− log πθ

(
yt | x,y<t

)︸ ︷︷ ︸
=:∆t(x,y<t,yt)

)]]}
, (4)

where S(z) := log(1 + ez) is the softplus function [41]. At token position t, the loss
is essentially ∆t(x,y<t, yt) (defined above) wrapped by the softplus function S(·) after be-
ing rescaled by βt. When βt is small, S(βtz) ≈ S(0) + βtS

′(0)z = log 2 + βt

2 z, so
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2
βt
S(βtz) is approximately equal to − log πθ

(
yt | x,y<t

)
after shifting by a constant. This

means minimizing our objective is approximately the same as minimizing the cross-entropy
loss E(x,y)∼D

[
−1{t≤|y|} · log πθ

(
yt | x,y<t

)]
. Conversely, when βt is large, 2

βt
S(βtz) =

2max{z, 0}+exp(−Ω(βt|z|)), which converges exponentially to 2max{z, 0}. The loss can then be
approximated by E(x,y)∼D

[
1{t≤|y|} ·max{∆t(x,y<t, yt), 0}

]
. This shows that small βt places

emphasis on minimizing the cross-entropy loss, while large βt places emphasis on matching
the generative distribution to the initial aligned model. In Appendix D.1, we provide a detailed
derivation of these limiting behaviors for large and small βt and further characterization for the
gradient when βt takes a moderate value.

Gradient of Our Objective. Our objective can also be interpreted by its gradient. The token-wise
gradient of the objective on each data point (x,y) with |y| ≥ t can be derived as:

∇
(

2

βt
S(βt∆t(x,y<t, yt))

)
= −2σ(βt∆t(x,y<t, yt))∇ log πθ

(
yt | x,y<t). (5)

Note that the gradient of the cross-entropy loss is −∇ log πθ

(
yt | x,y<t

)
, our fine-tuning objective

essentially applies an additional adaptive weight wt := 2σ(βt∆t(x,y<t, yt)) for the token-wise
gradient term of cross-entropy. The weight wt diminishes as −∆t(x,y<t, yt) := log πθ

(
yt |

x,y<t

)
− log πaligned

(
yt | x,y<t

)
becomes large. This difference in log probabilities essentially

characterizes the deviation between the fine-tuned model πθ and the initially aligned model πaligned

at the token position t (see also Theorem 3). Taking together, we can see that the fine-tuning objective
will adaptively diminish the weight of those token positions where the deviation of the distribution
approaches a certain threshold (controlled by βt), thereby constraining it from further deviation (by
diminishing the gradient at this position). Note that, at the beginning of the fine-tuning when πθ is
initialized as πaligned, the weight wt = 1, and the gradient of the loss is equivalent to that of standard
cross-entropy loss.6

Interpretation from A Reinforcement Learning Perspective. In Appendix D.3, we further show
how the loss function in Eqn 3 can also be derived from a KL-regularized reinforcement learning
objective with βt controlling the strength of the KL regularizes at each different positions t. Under
this RL-based interpretation, a larger βt essentially denotes a larger weight for the token-wise KL
regularization terms, representing a stronger constraint enforcing that the token-wise generative
distribution at the position t does not deviate much from that of the initial model πaligned.

4.2 Experiments

Configurations of βt. To test our argument, we set a large β for the first few tokens to impose a
stronger constraint such that their generative distributions won’t deviate too much from the aligned
models. This leads to the implementation of larger βt as β1 = 0.5, βt = 2 for 2 ≤ t ≤ 5 at the initial
5 tokens, while a much weaker constraint βt = 0.1 for t > 5 at the later tokens.

Fine-tuning Attacks. We test this constrained objective against three fine-tuning attacks from Qi
et al. [22] — 1) Harmful Examples: fine-tuning with 100 (harmful input, harmful answer) pairs; 2)
Identity Shifting: fine-tuning the model to self-identify as an absolutely obedient agent, and always
answer questions with affirmative prefix; 3) Backdoor Poisoning: fine-tuning the model on a mixture
of 100 (harmful input, refusal answer) pairs plus 100 (harmful input + a backdoor trigger, harmful
answer) pairs. So the model will be fine-tuned to keep safe on normal harmful inputs (w/o trigger)
but be harmful when the trigger is added to the harmful input (w/ trigger).

Benign Fine-tuning. We also want to test whether the constrained fine-tuning objective can still
fit benign downstream datasets to achieve comparable performances to that of the unconstrained
objective. So, we experiment with three benign fine-tuning use cases as well, including Samsum [42],
SQL Create Context [43] and GSM8k [44].

Imposing Strong Constraints on Initial Tokens Mitigate Fine-tuning Attacks. Table 3 summarizes
our results of fine-tuning Llama-2-7B-Chat and Gemma-1.1-7B-IT with the proposed constrained
fine-tuning objective. As illustrated, the constrained fine-tuning objective (Constrained SFT in the

6This is also why we multiply a constant factor 2
βt

to the loss. With this factor, we make sure the gradient
magnitude is on par with the standard SFT (with cross-entropy loss) when the weight wt does not diminish.
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Table 3: Fine-tuning with The Constrained Objective in Eqn 3, with larger constraints β1 = 0.5,
βt = 2 for 2 ≤ t ≤ 5 at initial tokens, and small constraints for later tokens βt = 0.1 for t > 5.

Models → Llama-2-7B-Chat Gemma-1.1-7B-IT

Datasets ↓ mean ± std (%)
(over 3 rounds) Initial Standard

SFT
Constrained
SFT (ours) Initial Standard

SFT
Constrained
SFT (ours)

Against Fine-tuning Attacks
Harmful Examples ASR 1.5 ± 0.2 88.9 ± 1.2 4.6 ± 0.5 1.8 ± 0.3 81.6 ± 2.9 1.9 ± 0.2
Identity Shifting ASR 0 ± 0 79.5 ± 2.3 8.1 ± 0.1 0 ± 0 83.6 ± 2.5 9.1 ± 1.7

Backdoor
Poisoning

ASR (w/o trigger) 1.5 ± 0.2 7.6 ± 1.1 1.9 ± 0.2 1.8 ± 0.3 2.0 ± 0.2 1.5 ± 0.1
ASR (w/ trigger) 1.7 ± 0.1 90.9 ± 1.4 10.9 ± 2.8 1.8 ± 0.3 82.3 ± 1.1 1.9 ± 0.8

Fine-tuning with Normal Downstream Datasets

Samsum ASR 1.5 ± 0.2 23.4 ± 2.5 3.2 ± 0.8 1.8 ± 0.3 2.0 ± 0.2 2.4 ± 0.3
Utility 25.5 ± 0.3 51.7 ± 0.5 50.1 ± 0.2 36.0 ± 1.4 51.5 ± 0.3 51.9 ± 0.5

SQL Create Context ASR 1.5 ± 0.2 15.4 ± 1.4 3.2 ± 0.8 1.8 ± 0.3 2.8 ± 0.2 2.4 ± 0.1
Utility 14.9 ± 0.4 99.1 ± 0.2 98.5 ± 0.1 88.0 ± 0.5 99.2 ± 0.1 98.6 ± 0.3

GSM8k ASR 1.5 ± 0.2 3.3 ± 0.4 2.0 ± 0.5 1.8 ± 0.3 2.9 ± 0.2 1.7 ± 0.4
Utility 25.5 ± 0.2 41.7 ± 0.4 37.4 ± 0.3 28.5 ± 1.2 63.3 ± 0.5 63.6 ± 0.4

table) generally keeps a low ASR after both adversarial fine-tuning attacks and benign fine-tuning
with normal downstream datasets. This suggests that the safety alignment can indeed be more
persistent against fine-tuning if we can properly apply a tight constraint to prevent the distribution of
early tokens from deviating too much from the initial models.

Comparable Utility Using The Constrained Loss. In Table 3, we also report utility metrics for
benign fine-tuning use cases, employing the standard ROUGE-1 score for Samsum and SQL Create
Context, and answer accuracy for GSM8k, consistent with established practices for these datasets.
As shown, both standard SFT and constrained SFT improve utility compared to the initial model
across all three cases. Notably, constrained SFT achieves comparable utility to standard SFT while
mitigating the risk of harmful fine-tuning. These results suggest that constraining initial tokens
offers significant advantages in maintaining model safety, without significantly compromising the
model’s ability to still leverage fine-tuning for enhanced utility in many downstream tasks. This is a
meaningful insight that may be leveraged to build an additional layer of protection for production
fine-tuning interfaces such as OpenAI’s Finetuning API [38]. Since fine-tuning interface providers
want to allow their users to customize their models for downstream usage while not breaking the
safety alignment, they should consider enforcing such more restrictive fine-tuning objectives that are
strategically designed to protect safety alignment while allowing customizability.

Experiment Details and More Ablation Studies. The full implementation details of this experiment
can be found in Appendix A.5. Besides, to further validate that the improvement in Table 3 is indeed
benefiting from the stronger constraints (larger βt) biased to the first 5 tokens, we also provide further
ablation studies on the choice of βt in Appendix C.

5 Related Work

Safety & Alignment. A large body of work has examined improved methods for alignment [16,
39, 19, 45, 14, 5, 31]. While we tie alignment approaches to potential downstream jailbreaks, we
do so mainly be examining aligned artifacts which go through more rigorous alignment procedures
than most other open source models. We rely on the Gemma [31] and Llama-2 [5] base and aligned
models throughout this work, as the safety alignment built in these two models are closest to the
technology applied in frontier proprietary models.

Jailbreaking Methods. A large body of work has examined methods for jailbreaking aligned LLMs,
including leveraging finetuning, decoding strategies, prefilling strategies, optimization strategies, and
even persuasion [21, 29, 22, 24, 46, 23, 47, 48, 30, 17]. Many approaches try to handle jailbreaking
through a systems approach by monitoring inputs and outputs with machine learning models [49],
but this is only as good as the monitoring mechanism (which can also be jailbroken) [50].

Superficial Alignment Hypothesis and Per-token Effects of Alignment Fine-tuning. Our work is
closely related to the Superficial Alignment Hypothesis (SAH) [28], which posits that the alignment
process for current LLMs only superficially changes the formats of inputs and outputs to be used
for interacting with the users. Besides, there are also some earlier works noting asymmetries in
the representation power and utility of different tokens during adaptation. For example, Zhang
and Wu [26] show that “the adaptation of topic and style priors” during finetuning are “learned
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independently and primarily at the beginning of a text sequence.” Lin et al. [25] also find that
differences between aligned and unaligned base models introduced by the alignment fine-tuning
vanishes as the sequence goes longer (similar to the effect that we observe in Figure 1, though theirs
are not in safety-specific contexts). Particularly, while Lin et al. [25] primarily tie such effects to
question whether fine-tuning is even necessary to achieve current level of alignment (e.g., in-context
learning may already suffice to achieve a comparable level of alignment), we go much deeper into
investigating the safety-specfic effects of this phenomenon and tie it to multiple downstream attacks
and training-based mitigations. Besides, we find Zhao et al. [27] also note a similar token-wise effect,
and they explicitly exploit this effect to design jailbreak attacks. Others have investigated fine-tuning
dynamics through interpretability or pruning methods, which is distinct but somewhat related to the
approach we take here [51, 52].

Protecting The Safety Alignment at Initial Token Positions. In Section 4, one important insight
that motivates the design of our constrained fine-tuning loss is that “safety alignment would be more
difficult to be circumvented if we can protect the generative distribution of the model at the early
token positions.” We note that Xu et al. [53] share a similar insight to ours in this regard. They find it
is possible to design a defense against inference-time jailbreak attacks by simply identifying safety
disclaimers and amplifying their token probabilities at the early token positions.

Connections to Control Theory and Safe Reinforcement Learning. Our data augmentation
approach in Section 3 relates to exploration requirements for optimal learning via policy gradient
methods [54], learning recovery policies [55], and safe control theory [56, 57]. We, however, leave
deeper connections to this literature for future work.

Other Notions of Safety Depth. We also note that safety “depth” may be multi-dimensional in
addition to token-based depth we describe here. Other considerations for depth would be the ability for
models to retain safety properties after adaptation that some have previously discussed [58, 51, 22].

6 Conclusion

Our work identifies a shortcut that current safety alignment strategies appear to exploit: that alignment
only needs to change the generative distribution of the first few tokens. We show that this may be a key
component of many downstream vulnerabilities. We then provide two initial strategies to address this:
(1) a data augmentation approach that can increase depth of alignment; (2) a constrained optimization
objective that can help mitigate finetuning attacks by constraining updates on initial tokens. Future
work can explore additional approaches grounded in control theory and safe reinforcement learning.
The methods we describe here may not be a perfect defense and may be subject to some future
adaptive attacks, but they are an initial step for improving robustness and further demonstrate how
much improvement there can be over current approaches. Fundamentally, our results are primarily to
support our argument that future safety alignment should be made more than just a few tokens deep.

Broader Impacts and Ethics Statement

Our work explicitly ties failure modes of safety alignment to potential shortcuts that can be taken by
alignment methods and advocates for, and provides a path forward for, deeper alignment approaches
that will improve safety more broadly. While a deeper understanding of the failures of alignment
may result in increased ability to jailbreak models, we believe that open investigations of such failure
modes are important for strengthening the safety of future models and broadly ensuring that models
have positive societal impact. The proposed prototype approaches (in this work) for strengthening
the alignment in current LLMs also contribute to the broader agenda of building safer and secure AI.
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A Detailed Setups of Our Experiments

A.1 Compute Resources

In this work, we use single 4 × A100-80GB GPU nodes or 4 × H100-80GB GPU nodes for all
experiments, depending on availability of the nodes. On each node, our experiments use up to 8 CPU
cores and 256GB memory, but overall the experiments are not CPU intensive tasks.

A.2 General Configurations

Decoding Parameters. Throughout this paper, we use the top-p sampling with a temperate of 0.9 and
a top-p parameter of 0.6 by default for decoding outputs from LLMs in our experiments. The only
case where we do not follow this default configuration is the decoding parameters exploit experiment
where the exploit itself needs to take use of different parameters by its design [24].

Safety Evaluation. As also mentioned in Section 2.1, we use the GPT-4 based judge to evaluate
the safety of model outputs, following the setup of Qi et al. [22]. Specifically, in such an evaluation
pipeline, we pass (input, output) pairs to the GPT-4-Turbo model, and prompt the model to evaluate
the harmfulness level of the output. The model will output a score ranging from 1 to 5, with higher
score indicating being more harmful. When reporting ASR in our experiments, we report the ratio
of outputs that get the highest score 5 (identical to the harmfulness rate metric in Qi et al. [22]).
By default, HEx-PHI safety benchmark [32] is used for safety evaluation. The only exception
is the experiments in Table 2, where we add additional evaluation on AdvBench for GCG attack
evaluation [29] and MaliciousInstruct for decoding parameters exploit [24]. These two additional
safety evaluation datasets are used in the original papers of the two work, and we report results on
both HEx-PHI and these additional safety evaluation datasets for a more complete reference.

A.3 Details of Data Augmentation Experiments

Here, we describe the implementation details of the data augmentation experiments in Section 3.1.

Safety Data. As noted in Eqn 2, we use a safety dataset DH to keep generating safety recovery
examples. To construct it, we first collect 256 harmful instructions. These instructions are mostly
collected from the red-teaming data provided by Ganguli et al. [61]. We make sure they do not
overlap with any of the safety evaluation datasets that we used in this paper, i.e., HEx-PHI [32],
AdvBench [29], and MaliciousInstruct [24]. Then, we generate refusal answers for each harmful
instruction using the initial Llama-2-7B-Chat model. We also collect the corresponding harmful
responses for these instructions using a jailbroken version of the model (jailbroken through fine-tuning
attacks per Qi et al. [22]). This results in the dataset DH with 256 examples of triplets (x,h, r).

Utility Data. To prevent the decrease of model utility during the data augmentation fine-tuning,
we also take benign instructions from the Alpaca [36] dataset. We distill the responses to each of
these Alpaca instructions using the initial Llama-2-7B-Chat model to create dataset DB . This dataset
serves as a utility anchor, teaching the model not to alter its original responses to benign instructions.

Training details with Eqn 2. In the implementation of the augmentation fine-tuning as per Eqn 2, we
set the number of prefilled tokens k to follow a distribution Pk, where k = 0 with a 50% probability,
and k is uniformly sampled from [1, 100] with a 50% probability. We set α = 0.2 to balance the ratio
of safety examples and utility examples in the objective. In batch-wise training, this is implemented
by randomly sampling 16 examples from DH and 64 examples from DB in each batch. Using this
objective, we train the model for 10 epochs on DH with a learning rate of 2×10−5 using the AdamW
optimizer (with the default configurations of the optimizer).

AlpacaEval. We also evaluate the utility of the augmented fine-tuned model with AlpacaEval [37],
which is reported as a winrate against the text-davinci-003 model (the default reference baseline for
AlpacaEval). Specifically, we use the 1.0 version of AlpacaEval without length control. To ensure the
setup is consistent with the safety evaluation, the official system prompt (with a focus on safety) of
Llama-2-7B-Chat is used when running AlpacaEval. We note that the win rates here can therefore be
generally lower than the numbers in official Alpaca leaderboard in which the safety system prompt is
not applied. Under this evaluation, we note that the augmented fine-tuned model achieves a winrate of
49.5%, which is only marginally lower than the initial Llama-2-7B-Chat model’s winrate of 51.8%.
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Limitations. Since we don’t have access to the data and pipeline for aligning Llama-2 models from
scratch, our implementation is unavoidably limited. As also specified in Section 3.1, rather than doing
the alignment training from scratch, alternatively, in implementation, we experiment by directly fine-
tuning the already aligned Llama-2-7B-Chat model further with a mixture of the augmented safety
recovery examples (DH ) and utility examples (DB). This implementation is inherently sub-optimal.
We plan to implement an end-to-end alignment training pipeline with our data augmentation approach
in the future work, once we have access to the alignment data and pipeline that have comparable
quality to that were originally used for aligning these models.

A.4 Details of Inference-Stage Attacks Experiments

We have tested three inference-stage attacks in Section 3.2, i.e., prefilling attack, GCG attack [29],
and decoding parameters exploit [24]. We specify the details here.

Prefilling Attack. Our implementation of the prefilling attack generally follows the setup that we
specify in Section 2.3.1. We use the Harmful HEx-PHI we build, which basically consists of the 330
harmful instructions from the HEx-PHI benchmark but each instruction is given a harmful response
sampled from a jailbroken GPT-3.5-Turbo model. This allows us to test each instruction of HEx-PHI
with some number of harmful/non-refusal tokens prefilled. Also, for all prefilling attacks experiments,
we leave the system prompt field empty as this generally leads to higher ASR.

GCG Attack. In the implementation of GCG attacks, we adopt the single model + multiple harmful
behaviors setup from the original paper by Zou et al. [29]. Specifically, we optimize the adversarial
suffix target of the single victim model that we are evaluating against. We train the adversarial suffix
over 50 harmful behaviors data points. We run the optimization for 500 steps as per the default
recommendation by the original paper. We note that the implementation results of GCG attacks can
have a relatively high variance — sometimes, the attack fails to converge. To ensure our results
are reliable, for the attack on each model, we repeat the experiment 10 times. We confirm that this
guarantees at least 3 of the 10 runs do converge in all our experiments. In Table 2, when we report
the ASR, we report the mean ± a standard deviation over the 3 most successful (with highest ASR)
runs out of the 10 runs. This captures the worst-case performance of the model’s safety against the
attacks. Also, as shown in Table 2, we report the Attack Success Rate on both HEx-PHI (the default
safety evaluation dataset) and AdvBench (the safety evaluation dataset used in the original paper).
Following the setup of Zou et al. [29], the official system prompt is used when doing the attack.

Decoding Parameters Exploit. We follow the same setup as per Huang et al. [24]. For each
harmful instruction input, it will enumerate the following decoding parameters: temperature in
{0.05, 0.1, 0.15, 0.2, 0.25, ..., 0.95, 1.0}, top-k in {1, 2, 5, 10, 20, 50, 100, 200, 500}, and top-p in
{0.05, 0.1, 0.15, 0.2, 0.25, ..., 0.95, 1.0}. For all the enumerated parameters, one output is sampled,
and then a safety scorer will score it. The most unsafe output will be picked. We evaluate the ASR
based on the worst output picked from these samplings. Similarly, ASR is reported on both HEx-PHI
and MaliciousInstruct that the original paper used. Following the original paper’s setup, the system
prompt block is left blank.

A.5 Details of Fine-tuning Attacks Experiments

A.5.1 Optimizer

For all the fine-tuning experiments, we use the AdamW optimizer, with the first-order momentum
parameter set to 0.5 and the second-order momentum parameter set to 0.999. For Llama-2-7B-Chat,
a learning rate of 2× 10−5 is used. For Gemma-1.1-7B-IT, we use a learning rate of 5× 10−6. A
batch size of 64 is used for all experiments.

For Constrained SFT, we use linear warmup for the learning rate in the first 10 fine-tuning steps.
This warmup makes sure the constraints imposed by the sigmoid function are gently initialized —
note that, at the start of the fine-tuning, the log ratio log πθ/πaligned in Eqn 3 is equal to 0 since πθ

is basically initialized as πaligned. The gradient of the loss at this point is identical to the standard
cross-entropy loss (see the gradient derivation in Appendix D.2). Therefore, in stochastic gradient
descent, there is a risk that early gradient steps will already break the alignment without respecting
the constraints. A few steps of warmup in the early points will make sure the constrains are gently
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initialized — the early gradient steps (when the gradients are close to that of standard SFT) are gently
taken. See Table 5 in Appendix C for ablation of the effect of the warmup.

A.5.2 Fine-tuning Attacks

We evaluate three fine-tuning attacks from Qi et al. [22].

Harmful Examples. It fine-tunes the model with 100 (harmful input, harmful answer) pairs. We use
exactly the same 100 pairs from Qi et al. [22]. We fine-tune models on this dataset for 25 epochs.

Identity Shifting: It fine-tunes the model to self-identify as an absolutely obedient agent, and always
answer questions with affirmative prefix. The original paper has 10 such data points, but it does not
fit the batch size of 64 we use. So we extend it to 100 data points manually, in the same format. We
fine-tune models on this dataset for 25 epochs.

Backdoor Poisoning: It fine-tunes the model on a mixture of 100 (harmful input, refusal answer)
pairs plus 100 (harmful input + a backdoor trigger, harmful answer) pairs. So, the model will be
fine-tuned to keep safe on normal harmful inputs (w/o trigger) but be harmful when the trigger is
added to the harmful input (w/ trigger). We use the same data from Qi et al. [22]. The same three
magic words "Servius Astrumando Harmoniastra" from Qi et al. [22] are used as the backdoor trigger.

A.5.3 Benign Fine-tuning Use Cases

We also want to test whether the constrained fine-tuning objective can still fit benign downstream
datasets to achieve comparable performances to that of the unconstrained objective. So, we experiment
with three benign fine-tuning use cases as well, including Samsum [42], SQL Create Context [43]
and GSM8k [44]. For each of the three datasets, we fine-tune models on them for 3 epochs.

Specifically, Samsum is a dataset for summarization tasks. We report the ROUGE-1 score as the
utility. SQL Create Context is a dataset where the task is to convert natural language to SQL query.
The ROUGE-1 score is also used for its utility evaluation. GSM8k is a dataset for math tasks. We
report the utility as the accuracy of the model’s answers.

B Pertoken Dynamics of Benign Fine-tuning

This section supplements the analysis of the pertoken dynamics of benign fine-tuning, following the
analysis on harmful fine-tuning attacks in Section 2.3.2.

Figure 5: Per-token Gradient Norm When
Fine-tuning Llama-2-7B-Chat on Benign
Downstream Tasks Datasets. Note: 1)
ASR of initially aligned model = 1.5%;
2) After 10 gradient steps on SQL Create
Context = 13.6%; 3) After 10 gradient
steps on Samsum = 22.1%.

Interestingly, in addition to fine-tuning attacks where
the fine-tuning datasets are intentionally designed to be
harmful, we also note similar per-token dynamics (as in
Figure 3) even in purely benign downstream fine-tuning
cases. Figure 5 plots the gradient norm when fine-tuning
Llama-2-7B-Chat on SQL Create Context [43] and Sam-
sum [42]. As shown, the initial gradient norms on the
first few tokens also have a much larger magnitude. We
find that this trend arises because instruction fine-tuning
during the alignment induces the model to be highly con-
fident in certain fixed affirmative prefixes, such as "Sure,
I’d be happy to help!" on normal inputs. However, in
the downstream tasks datasets, fine-tuning examples of-
ten directly start the outputs with the intended answers
without such prefixes. Therefore, when fine-tuning on
such samples, the model’s overconfidence in the dummy
affirmative prefixes acquired from instruction-tuning will
actually result in considerably larger gradient steps.

We hypothesize that this might be one underlying rea-
son why Qi et al. [22] discover that even benign fine-tuning can cause safety regression in the
aligned LLMs — it may merely result from the excessively larger gradient steps when updating the
generative distributions of these initial transition tokens, which, in turn, lead to over-generalization (or
catastrophic forgetting), and therefore unintendedly also disrupt the model’s generative distribution
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for refusal prefixes in these token positions. This is plausible, as we note that a full fine-tuning on
SQL Create Context and Samsum with more than 600 gradient steps results in an increase of ASR
from 1.5% to 14.9% and 25.5% respectively, but the ASR is already at 13.6% and 22.1% after the
initial 10 gradient steps. This suggests that the most significant safety regression exactly occurs
during these early steps when the gradient norm for the initial tokens is excessively large.

C Ablation Studies on Fine-tuning Attack Experiments

This section presents more in-depth ablation studies to supplement our studies in Section 4 and
Table 3 there. We also supplement Section 3.2 by presenting results (Table 6) of fine-tuning attacks
on the augmented model that we build in Section 3.

Biased Constrains on The Early Tokens Are Important. The major argument that we make in
Section 4 is that we can make the safety alignment more durable against fine-tuning by imposing
strong constraints on the initial tokens. Therefore, we set a larger βt to impose stronger constraints in
early tokens while only setting a very weak βt for later tokens. Our results in table 3 indeed verify the
improved safety. To further support that this improvement is indeed due to the biased constraints on
the early tokens, we perform an ablation where all βt are set to a uniform value. Results are presented
in Table 4. As shown, if we set the same small β = 0.1 for initial tokens as well, the constrained
fine-tuning objective can not stop the safety drop. While if we set the large β = 2.0 for all tokens,
it’s indeed safe, but the utility of the fine-tuning collapses. Similarly, β = 0.5 for all tokens neither
achieve optimal safety, and the utility is worse than the biased configurations we use in Table 3.

Table 4: Ablation on βt in Eqn 3. (Fine-tuning Llama-2-7B-Chat)
Datasets Initial Standard

SFT
Constrained SFT

(biased βt)
Constrained SFT

(uniform β = 0.1)
Constrained SFT

(uniform β = 0.5)
Constrained SFT

(uniform β = 2.0)
Against Fine-tuning Attacks

Harmful Examples ASR 1.5% 88.9% 4.6% 86.2% 7.2% 0.5%
Identity Shifting ASR 0% 79.5% 8.1% 41.6% 17.1% 3.4%

Backdoor
Poisoning

ASR (w/o trigger) 1.5% 7.6% 1.9% 3.5% 1.8% 1.2%
ASR (w/ trigger) 1.7% 90.9% 10.9% 74.4% 24.3% 1.4%

Fine-tuning with Normal Downstream Datasets

Samsum ASR 1.5% 23.4% 3.2% 3.9% 3.5% 2.4%
Utility 25.5% 51.7% 50.1% 51.7% 49.8% 42.5%

SQL Create Context ASR 1.5% 15.4% 3.2% 3.3% 2.2% 2.6%
Utility 14.9% 99.1% 98.5% 99.1% 98.6% 92.6%

GSM8k ASR 1.5% 3.3% 2.0% 4.0% 1.5% 2.0%
Utility 25.5% 41.7% 37.4% 39.4% 34.8% 2.1%

Ablation on The Effects of Warmup Steps. As we have also noted in Appendix A.5.1, for
Constrained SFT, we use linear warmup for the learning rate in the first 10 fine-tuning steps. This
warmup makes sure the constraints imposed by the sigmoid function are gently initialized — note
that, at the start of the fine-tuning, the log ratio log πθ/πaligned in Eqn 3 is equal to 0. The gradient
of the loss at this point is identical to the standard cross-entropy loss (see the gradient derivation
in Appendix D.2). Therefore, in stochastic gradient descent, there is a risk that early gradients will
already break the alignment without respecting the constraints. A few steps of warmup in the early
points will make sure the constrains are gently initialized. We present an ablation study on the effect
of these 10 steps of warmup in Table 5. We can summarize two key takeaways: 1) the warmup
steps are indeed useful to make the constrained SFT to be perform consistently safer; 2) the safety
improvement is not solely coming from the warmup steps but mostly from the constrained SFT
optimization objective we design.

Fine-tuning Attacks on The Augmented Model We Build in Section 3. Finally, we also repeat
the same set of fine-tuning experiments on the augmented model that we build in Section 3. Results
are presented in Table 6. By comparing the results of SFT in Table 6 and Table 5, we can see
the augmented model is generally more robust in multiple fine-tuning cases compared with the
non-augmented model. And the constrained fine-tuning objective can also be applied to it, though we
didn’t observe consistently better results when the two techniques are combined.
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Table 5: Ablation on The Effects of The 10 Warmup Steps. (Fine-tuning Llama-2-7B-Chat)
Datasets Initial Standard

SFT
Standard SFT
(with warmup)

Constrained
SFT

Constrained SFT
(with warmup)

Against Fine-tuning Attacks
Harmful Examples ASR 1.5% 88.9% 89.4% 29.1% 4.6%
Identity Shifting ASR 0% 79.5% 44.8% 69.6% 8.1%

Backdoor
Poisoning

ASR (w/o trigger) 1.5% 7.6% 2.7% 2.7% 1.9%
ASR (w/ trigger) 1.7% 90.9% 80.5% 9.7% 10.9%

Fine-tuning with Normal Downstream Datasets

Samsum ASR 1.5% 23.4% 3.8% 23.1% 3.2%
Utility 25.5% 51.7% 51.9% 50.2% 50.1%

SQL Create Context ASR 1.5% 15.4% 3.3% 2.0% 3.2%
Utility 14.9% 99.1% 99.1% 98.6% 98.5%

GSM8k ASR 1.5% 3.3% 2.9% 3.1% 2.0%
Utility 25.5% 41.7% 41.6% 37.2% 37.4%

Table 6: Fine-tuning Llama-2-7B-Chat-Augmented That We Built in Section 3. Refer to Table 5 for
the results on the non-augmented counterpart, i.e., Llama-2-7B-Chat.

Datasets Standard
SFT

Standard SFT
(with warmup)

Constrained
SFT

Constrained SFT
(with warmup)

Against Fine-tuning Attacks
Harmful Examples ASR 55.2% 51.5% 9.4% 5.2%
Identity Shifting ASR 53.9% 37.0% 28.8% 3.0%

Backdoor
Poisoning

ASR (w/o trigger) 3.9% 2.7% 1.8% 0.9%
ASR (w/ trigger) 80.0% 83.6% 16.4% 12.7%

Fine-tuning with Normal Downstream Datasets

Samsum ASR 2.1% 0.6% 2.1% 1.2%
Utility 52.4% 51.9% 50.4% 50.1%

SQL Create Context ASR 3.8% 1.5% 2.0% 0.9%
Utility 99.0% 99.1% 98.4% 98.5%

GSM8k ASR 0.9% 0.9% 0.3% 0.3%
Utility 42.0% 41.2% 36.5% 36.9%

D Interpretation of Our Constrained Fine-tuning Objective

In this section, we provide detailed interpretation for our constrained fine-tuning objective in Section 4.
Recall that our fine-tuning objective is defined as:

L(θ) := E
(x,y)∼D

−
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2

βt
log
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Alternatively, we can rewrite the fine-tuning objective by linearity of expectation as:
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where in the last equality we define S(z) := − log(σ(−z)) = − log( 1
1+exp(z) ) = log(1 + ez),

namely the softplus function. Therefore, we can split L(θ) into a sum of token-wise losses:

L(θ) =
∑
t≥1

ℓt(θ), where ℓt(θ) := E
(x,y)∼D

1{t≤|y|}
2

βt
S

(
βt∆t(x,y<t, yt)

)
, (10)

∆t(x,y<t, yt) := log πaligned

(
yt | x,y<t

)
− log πθ

(
yt | x,y<t

)
. (11)

In the following, we mainly focus on how to interpret the token-wise loss ℓt(θ).
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D.1 Limiting Behaviors

D.1.1 Small βt

When βt is small, we have the following theorem showing that ℓt(θ) in Eqn 10 is approximately the
cross-entropy loss at position t, up to a constant.
Theorem 1. For a given θ, as βt → 0, we have

ℓt(θ)− C(βt) = E
(x,y)∼D

[
−1{t≤|y|} · log πθ(yt | x,y<t)

]
+O(βt), (12)

where

C(βt) := E
(x,y)∼D

[
1{t≤|y|}

(
2

βt
log 2 + log πaligned(yt | x,y<t)

)]
, (13)

which is a bias term that is constant with respect to θ.

Proof. Recall that ℓt(θ) := E(x,y)∼D 1{t≤|y|}
2
βt
S(βt∆t(x,y<t, yt)) and S(z) := log(1 + ez) is

the softplus function [41]. By Taylor expansion, it holds for all z that S(βtz) = S(0) + S′(0)βtz +
S′′(ξβtz)β

2
t z

2 for some ξ ∈ (0, 1) depending on z. Since S(0) = log 2, S′(0) = 1
2 and S′′(x) ∈

[0, 1/4] for all x, we have |S(βtz)− (log 2 + 1
2βtz)| ≤ 1

4β
2
t z

2. Dividing both sides by βt/2, we get∣∣∣∣ 2βt
S(βtz)−

(
2

βt
log 2 + z

)∣∣∣∣ ≤ 1

2
βtz

2. (14)

Then for our token-wise loss ℓt(θ), we have∣∣∣∣ℓt(θ)− E
(x,y)∼D

[
1{t≤|y|}

(
2

βt
log 2 + ∆t(x,y<t, yt)

)]∣∣∣∣ ≤ 1

2
βt E

(x,y)∼D
1{t≤|y|}∆

2
t (x,y<t, yt)

= O(βt).

Recall that ∆t(x,y<t, yt) := log πaligned

(
yt | x,y<t

)
− log πθ

(
yt | x,y<t

)
as per Eqn 11. We can

thus have

ℓt(θ)− E
(x,y)∼D

[
1{t≤|y|}

(
2

βt
log 2 + log πaligned(yt|x,y<t)

)]
= − E

(x,y)∼D

[
1{t≤|y|} log πθ(yt|x,y<t)

]
+O(βt).

(15)

Noting that C(βt) := E(x,y)∼D

[
1{t≤|y|}

(
2
βt

log 2 + log πaligned(yt | x,y<t)
)]

, we can complete
the proof.

D.1.2 Large βt

When βt is large, we have the following theorem showing that ℓt(θ) can be approximated by
ℓ̃t(θ) := E(x,y)∼D

[
1{t≤|y|} max{∆t(x,y<t, yt), 0}

]
.

Theorem 2. For a given θ, as βt → +∞, we have

ℓt(θ) = 2ℓ̃t(θ) +O(β−1
t ),

where
ℓ̃t(θ) := E

(x,y)∼D

[
1{t≤|y|} max{∆t(x,y<t, yt), 0}

]
.

Proof. First, we note the following identity.

S(z) = log(1 + ez) = max{z, 0}+ log((1 + ez)e−max{z,0}) = max{z, 0}+ log(1 + e−|z|).
(16)

This implies that∣∣∣∣ 2βt
S(βtz)− 2 ·max{z, 0}

∣∣∣∣ = 2

βt
log(1 + e−βt|z|) ≤ 2

βt
e−βt|z|. (17)
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Then for our token-wise loss ℓt(θ), we have∣∣∣∣ℓt(θ)− 2 · E
(x,y)∼D

[
1{t≤|y|} max{∆t(x,y<t, yt), 0}

]∣∣∣∣ ≤ 1

βt
E

(x,y)∼D

[
1{t≤|y|}e

−βt|∆t(x,y<t,yt)|
]

(18)

Noting that the RHS is O(β−1
t ) completes the proof.

Next, we show that ℓ̃t(θ) is minimized to 0 if and only if πθ(yt | x,y<t) = πaligned(yt | x,y<t).

Theorem 3. The minimum value of ℓ̃t(θ) is 0. If Pr(x,y)∼D[yt = c | x,y<t] > 0 for all (x,y) in the
support of D and all c in the vocabulary, then ℓ̃t(θ) = 0 if and only if πθ(yt | x,y<t) = πaligned(yt |
x,y<t).

Proof. It is obvious that ℓ̃t(θ) ≥ 0, and ℓ̃t(θ) = 0 can be attained when θ stays the same as the
parameter for πaligned. It is obvious that πθ(yt | x,y<t) = πaligned(yt | x,y<t) implies ℓ̃t(θ) = 0.
Conversely, suppose ℓ̃t(θ) = 0. Then ∆t(x,y<t, yt) ≤ 0 for all (x,y) in the support of D. By
definition of ∆t(x,y<t, yt), this implies πaligned(yt | x,y<t) ≤ πθ(yt | x,y<t). Summing over all
yt in the vocabulary, we get 1 =

∑
yt
πaligned(yt | x,y<t) ≤

∑
yt
πθ(yt | x,y<t) = 1. So all the

inequalities must be equalities, and we get πθ(yt | x,y<t) = πaligned(yt | x,y<t).

This corresponds to the intuition that large βt places emphasis on matching the generative distribution
of fine-tuned model to the initial aligned model.

D.2 Gradients of The Constrained Fine-tuning Objective

The gradient of ℓt(θ) on a data point (x,y) with |y| ≥ t is derived as:

∇
(

2

βt
S(βt∆t(x,y<t, yt))

)
= 2S′(βt∆t(x,y<t, yt))(−∇ log πθ

(
yt | x,y<t))

= 2σ(βt∆t(x,y<t, yt))(−∇ log πθ

(
yt | x,y<t)). (19)

Note that the gradient of the cross-entropy loss is −∇ log πθ

(
yt | x,y<t

)
. Therefore, compared

to vanilla cross-entropy loss, our fine-tuning objective essentially applies an additional adaptive
weight wt := 2 · σ(βt∆t(x,y<t, yt)) for the token-wise gradient term of cross-entropy. The weight
wt decreases as ∆t(x,y<t, yt) := log πaligned

(
yt | x,y<t

)
− log πθ

(
yt | x,y<t

)
decreases. This

difference in log probabilities essentially characterizes the deviation between the fine-tuned model πθ

and the initially aligned model πaligned at the token position t (see also Theorem 3). Taking together,
we can see that the fine-tuning objective will adaptively diminish the weight of those token positions
where the deviation of the distribution approaches a certain threshold (controlled by βt), thereby
constraining it from further deviation (by diminishing the gradient at this position). Note that, at the
beginning of the fine-tuning when πθ is initialized as πaligned, the weight wt = 1, and the gradient of
the loss is equivalent to that of standard cross-entropy loss.

D.3 Interpreting Eqn 3 from A Reinforcement Learning Perspective

We note that our loss function in Eqn 3 can also be interpreted from a reinforcement learning
perspective if we cast fine-tuning as a KL-constrained reinforcement learning problem rather
than a standard supervised fine-tuning problem. Specifically, we can follow a similar trick as DPO [16]
to derive a unified loss, but taking a different approach to reward modeling. We, instead, formulate
our problem setting like Mudgal et al. [40], where we optimize at the token level (where tokens are
actions), rather than DPO which uses a sequence-level optimization (corresponding more to a bandit
setting where entire sequences are actions).

22



D.3.1 A Token-wise Reinforcement Learning (RL) Formulation.

We first introduce the following token-wise RL formulation for LM alignment, which is adapted
from Mudgal et al. [40]. In Appendix D.3.2, we show how a fine-tuning task can be cast into this
token-wise RL problem, and Eqn 3 is essentially a surrogate learning objective of this RL problem.

Reward Function. For a pair of an input and a model response (x,y), we cast custom fine-tuning as
a problem of further optimizing an already aligned model for a new custom reward function r([x,y]).
Here we use [x,y] to denote a concatenation of the two sequences and we use this concatenation to
denote a state, and the reward function is defined on this state. Following Mudgal et al. [40], we can
decompose it to a token-wise reward R([x,y<t]) defined on the intermediate state [x,y<t]:

R([x,y<t]) =

{
0, yt−1 ̸= EOS

r([x,y<t]), yt−1 = EOS
, (20)

where EOS is the end of the sequence token. The reward is nonzero only if the decoding is
complete. We note that, by r([x,y<t]) and R([x,y<t]), we mean the function r and R are applied
on the concatenation of x and y<t. Similarly, in the following, we will also use notations such
as R([x,y<t, z<τ ]) and R([x,y<t, z]) to denote that we apply R on the concatenation between
[x,y<t] and a followup sequence z<τ or just a single token z. These concatenations all represent
some states of the generation.

Value Function. At an intermediate state [x,y<t], the value function of a policy π defined on this
reward function can be written as:

Vπ([x,y<t]) := E
z∼π(·|x,y<t)

{∑
τ≥1

R
(
[x,y<t, z<τ ]

)}
(21)

Here z is a sequence, and z<τ is empty when τ = 1 as we index tokens in a sequence starting from
the index number 1. Also, in the following formulations, we will have multiple different notations
πθ, πaligned, π∗ to denote different policies instances, so we will use Vπθ

, Vπaligned
, Vπ∗ to differently

denote their value functions respectively.

Advantage Function. When the custom fine-tuning is modeled by the reward function R, we define
an expected advantage function of a fine-tuned model πθ w.r.t. the initially aligned model πaligned:

Âπθ
([x,y<t]) := E

z∼πθ(·|x,y<t)

{
Vπaligned

(
[x,y<t, z]

)
− Vπaligned

(
[x,y<t]

)}
, (22)

Here the advantage function is defined for non-terminal states [x,y<t] where yt−1 is not the ending
token EOS, and z is a single token sampled by z ∼ πθ(·|x,y<t). Note that the left-hand term
could also be viewed as a Q-function with z being the action. In other words, a language model
can be viewed as a fully observable Markov decision process (MDP) with state represented by the
concatenation of the prompt and the partially decoded response tokens so far and action represented
by the next token that is to be decoded.

The Reinforcement Learning Objective. Following Mudgal et al. [40], we adopt a token-wise RL
learning objective:

max
θ

E
(x,y)∼D

{∑
t≥1

[
Ãπθ

([x,y<t])− βt ·DKL
(
πθ( · |x,y<t)

∥∥ πaligned( · |x,y<t)
)]}

, (23)

where the advantage function is optimized at each token position t with a token-wise KL regularizer
term βt ·DKL

(
πθ( · |x,y<t)

∥∥ πaligned( · |x,y<t)
)

applied for each token position. The strength of
regularization at each token position is controlled by βt.

Closed Form of The Optimal Solution π∗. Omitting some intermediate steps for brevity, by
Theorem 2.1 of Mudgal et al. [40], the optimal policy solution π∗ of Eqn 23 is:

π∗(z|x,y<t) =
1

Z(x,y<t)
πaligned(z|x,y<t) · eVπ∗ ([x,y<t,z])/βt , (24)
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where Z(x,y<t) is the partition function, Vπ∗ is the value function of this optimal policy. We note
that this conveniently allows us to re-arrange terms to represent the optimal value function—similar
to the steps taken during the derivation of DPO [16]:

Vπ∗([x,y<t]) = βt · log
π∗(z|x,y<t)

πaligned(z|x,y<t)
+ βt · logZ(x,y<t) (25)

D.3.2 Casting Fine-tuning into a Reinforcement Learning Objective

In the setting of custom fine-tuning we consider in this work, the dataset D is in the form of
D := {x,y} with only inputs and example outputs, without preference pairs. Now, we show
an alternative to the standard SFT objective (Eqn 1) for learning from this dataset: casting the
optimization as a KL-regularized RL objective in Appendix D.3.1. We will show how our token-
wise constrained fine-tuning objective in Eqn 3 can essentially be derived from this token-wise
KL-regularized RL problem!

Intuitively, fine-tuning πaligned further on custom data points (x,y) implicitly assumes that this
fine-tuning data is as preferable or more preferable than whatever the model would currently output.
To represent this implied preference that the custom example response y is better than the current
responses from πaligned, we can effectively leverage existing preference learning methods. Recall
that, in preference optimization (with both positive and negative examples), the Bradley-Terry
model [62] is used as a model of the underlying reward function. In our setup, we don’t have
pair-wise preference data, and we only have inputs and positive examples. However, we can define
a boolean T ([x,y<t], yt) to encode the preference: in the fine-tuning task, yt is a preferable token
output following [x,y<t] compared to the responses from the initial aligned model πaligned. So,
given an expected random draw from the aligned policy and the draw from the fine-tuned optimal
policy, we can define:

P
(
T ([x,y<t], yt)

)
= σ

(
Vπ∗([x,y<t, yt])− E

z∼πaligned(·|x,y<t)
Vπ∗([x,y<t, z])

)
(26)

Intuitively, this means that—conditioned on the context [x,y≤t]—if there is a continuation token yt
that is higher than the average reward of actions sampled from the initial aligned model πaligned, it is
likely to be an improved or preferred choice in the custom fine-tuning task. The higher the margin
Vπ∗([x,y<t, yt])− Ez∼πaligned(·|x,y<t) Vπ∗([x,y<t, z]) is, the more likely it is an improvement.

With this function in mind, combined with Eqn 25, we can leverage a similar derivation to DPO [16]
to arrive at a constrained fine-tuning objective that is only dependent on the current policy, but
is regularized by the original aligned policy. We plug in the closed form of the optimal value
function (Eqn 25) into the modeling in Eqn 26, obtaining:

P
(
T ([x,y<t], yt)

)
= σ

(
βt log

π∗(yt|x,y<t)

πaligned(yt|x,y<t)
− βt E

z∼πaligned(·|x,y<t)
log

π∗(z|x,y<t)

πaligned(z|x,y<t)

)

= σ

(
βt log

π∗(yt|x,y<t)

πaligned(yt|x,y<t)
+ βtDKL

(
π∗(·|x,y<t)

∥∥πaligned(·|x,y<t)
))

.

(27)

Thus, we don’t need to explicitly learn the value function, instead it is implicitly encoded by the
policy. Then the optimization objective can become:

max
θ

E
(x,y)∼D

{∑
t≥1

1

βt
logPθ

(
T ([x,y<t], yt)

)}
, (28)

where:

Pθ

(
T ([x,y<t], yt)

)
:= σ

(
βt log

πθ(yt|x,y<t)

πaligned(yt|x,y<t)
+ βtDKL

(
π∗(·|x,y<t)

∥∥πaligned(·|x,y<t)
))

,

(29)
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and the division of βt in Eqn 28 normalizes the gradient norm at each position t as we will later see
in Eqn 31 and also clarified in Section 4.1 (and Appendix D.2).

Note that βt ·DKL

(
π∗(·|x,y<t)

∥∥πaligned(·|x,y<t)
)
≥ 0 is a non-negative constant, we have:

Pθ

(
T ([x,y<t], yt)

)
≥ σ

(
βt · log

πθ(yt|x,y<t)

πaligned(yt|x,y<t)

)
(30)

So, the objective in Eqn 28 can be replaced with a lower bound surrogate objective Lθ:

E
(x,y)∼D

{∑
t≥1

1

βt
logPθ

(
T ([x,y<t], yt)

)}
≥ Lθ (31)

where

Lθ := E
(x,y)∼D

{∑
t≥1

1

βt
· log σ

(
βt · log

πθ(yt|x,y<t)

πaligned(yt|x,y<t)

)}
.

Eqn 3 is then equivalent to minθ −Lθ ⇐⇒ maxθ Lθ. So, optimizing the objective Eqn 3 is
essentially to maximize the lower-bound of the reinforcement learning objective in Eqn 28.
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